Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

نویسندگان

  • Robert J Friederichs
  • Helen F Chappell
  • David V Shepherd
  • Serena M Best
چکیده

Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon-substituted hydroxyapatite nanocomposite: Synthesis, characterization and in vitro bioactivity study in Human Serum Albumin

Nano hydroxyapatite and Silicon-substituted hydroxyapatite nanocomposites with various amount of Si contents (0, 2, 4 and 6 mole % as named as HS0, HS2, HS4 and HS6) were prepared via in situ hybridization method and were analyzed by XRD, FTIR, SEM and AFM techniques. Size distribution of the products demonstrated that hydroxyapatite particles size was between 2 and 53.5 nm with further mean si...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising p...

متن کامل

The effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix

The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015